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Atomic Timekeeping and the Statistics of 
Precision Signal Generators 

JAMES A. BARNES 

Abstract-Since most systems that generate atomic time employ 
quartz crystal oscillators to improve reliability, it is essential to de- 
termine the effect on the precision of time measurements that these 
oscillators introduce. A detailed analysis of the calibration procedure 
shows that the third finite difference of the phase is closely related to 
the clock errors. It was also found, in agreement with others, that 
quartz crystal oscillators exhibit a “flicker” or / W  -I type of noise 
modulating the frequency of the oscillator. 

The method of finite differences of the phase is shown to be a 
powerful means of classifying the statistical fluctuations of the phase 
and frequency for signal generators in general. By employing finite 
differences it is possible to avoid divergences normally associated 
with flicker noise spectra. Analysis of several cesium beam frequency 
standards have shown a complete lack of the 1 W I  --I type of noise 
modulation. 

INTKODI-CTION 

N ORDISARJ7 clock consists of tn-o basic systems: 
a periodic phenomenon (pendulum), and a 
counter (gears, clock face, etc.) to count the 
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periodic events. .An atomic clock differs fro11’ this only 
in  that  the frequenq. of the periodic phenomenon is, in 
some sense, controlled by an atoniic transition (atomic 
frequent), standard). Since microwave spectroscopic 
techniques allo\\- frequencies to be measured \vith a 
relative precision far better than any  other quantity, 
the desirabilit). of extending this precision to the domain 
of time nieasurenient has long been recognized [l].  

From the standpoint of precision, i t  would be desira- 
ble to run the clock (counter) directly from the atomic 
frequent! standard. How ever, atomic frequency stan- 
dards in general are sufficient11 complex that  reliable 
operation over very extended periods becomes some- 
what doubtful (to say nothing of the cost involved). 
For this reason, a quartz crystal oscillator is often used 
as  the source of the “periodic” events to run  a synchro- 
nous clock (or its electronic equivalent). The  frequency 
of this oscillator is then regularly checked by the 
atomic frequency standard and corrections are made. 

These corrections can usually take on any of three 
forms: 1) correction of the oscillator frequency, 2 )  cor- 
rection of the indicated time, or 3) an accumulating 
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record of the difference from ,itomic time of the apparent 
or indicated time sho\\n by the clock. Both methods 
1) and 2 )  require a calculation of the time difference, 
and it is sufficient to  consider 0111) the last method and 
the errors inherent in it. 

careful consideration of the calibration procedure 
leads to  the development of certain functionals of the 
phase which have a very important property-existence 
of the variance even in the presence of a flicker (1 ' 1  w (  1 
type of frequencq noise. The  simplest of these func- 
tionals, the second and third finite differences of the 
phase, turn out to  be stationary, random variables 
\\.hose auto-covariance function is sufficientl?. peaked to  
insure rapid convergence of the variance of a finite 
sample toward the true (infinite sample) variance. These 
functionals of the phase have the added features of 
being closely related to  the errors of a clock run froin 
the oscillator as well as  being a useful nieasure of oscil- 
lator stabilit!.. 

Vf'ith the aid of these functionals, it is possible to  
classify the statistical fluctuations observed in various 
signal sources. In  agreement with uork of others 
[2]-[5], a flicker noise frequency inodul,ition \vas oh- 
served for all qunrtz cr? stal oscillators tested. Similar 
studies on several commercial rubidium gas cells g'ive 
uniform indications of flicker noise modulation of levels 
comparable to those of the better quartz cr\rstal oscil- 
lators. 

In Section I ,  the effects on the precision of a time 
scale due entirely to  the calibration procedure of the 
quartz crystal oscillator and the oscillator's inherent 
frequent), instability are considered. 

I n  Section 11, the experimental results of Section I are 
used as  the basis for a theoretical model of oscillator 
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frequency fluctuations, and the results are compared to 
those of other experimenters. 

In  Section 111, the statistics of <in atomic frequent) 
standard of the passive type (e.g., Cs-beam or Iib-gas 
cell) are considered, and the composite Clock system is 
treated. Section I\' is devoted to  a brief discussion of 
stability measures for signal sources. 

I .  Q r - a K n  CKTSTAL OscII.I..\n)K €'fr:\si; I ~ r , ~ ~ ( ~ , ~ ~ ~ . ~ , i ~ r o ~ s  

Typical Gross Belzaaior 
Figure 1 shon-s a t!.pical aging curve for ;L fairlJ- good 

quartz cr)-stal oscillator. The oscillator had heen operat- 
ing for a fe\v months prior to  the date  shoivn i n  the 
graph. On 3Ta~- 1 ,  1963, the frequency of the oscillator 
\ \as  reset in  order to maintain relatively small correc- 
tions. 

Least square fits of straight lines to the tn-o parts of 
Fig. 1 yield aging rates of 0.S36X10-10 per day and 
0.515 X 10-l0 per da)., respectivelJ-. This difference i n  
aging rates could be explained by a n  acceleration of the 
frequency of about -9X10-'5 per da>- per day. This 
acceleration of the frequency is suflicientl\~ small over 
periods of a feu- da>.s \\-hen compared to other sources 
of error tha t  i t  can be safely ignored. Thus,  the fre- 
quency of conventional quartz oscillators cau  be i\.rit ten 
in the form 

Q ( t )  = nap + at + € ( t ) ]  (1) 

\\.here a is the aging rate, ;(t)  is a variation of the fre- 
quenq-  probably caused by noise processes i n  the oscil- 
lator itself, and t can he considered to be sotlie rather 
gross nieasure of the time (since a and i are quite 
small corrections). 

I I I I I I I I I I I I 1 1 - 1 - 1  



1966 BARNES: ATOMIC TIMEKEEPING AND PRECISION SIGNAL GENERATORS 209 

.4ctual Calibration Procedure of a Clock System 

is 163 
The  fundamental equation for atomic timekeeping 

where Q is the instantaneous frequency of the oscillator 
as measured by an atomic frequency standard, dcp is the 
differential phase change, and d t  is an increment of time 
as generated by this clock system. Since time is to  be 
generated by this system, and 4 and $1 are the directly 
measured quantities, i t  is of convenience to  assume that  
Q=Q(+) and to  write the solution of (2) in the form, 

If one divides the output phase of the oscillator by f&, 
and defines the apparent or indicated time t A  to  be 

4 
QO 

t A = - >  

(1), ( 3 ) ,  and (4) can be combined to  give 

4 s  it is indicated in Fig. 1, it is possible to  maintain the 
magnitude of the relative frequency offset 1 LvtA +;I 
within fixed bounds of lop8. Expanding ( 5 )  to first order 
in this relative frequency offset yields 

Equation (6) should then be valid to about one part in 
lo'6. 

Normally the frequency of the oscillator is measured 
over some period of time (usually a few minutes) a t  
regular intervals (usually a few days). At this paint, i t  
is desirable to  restrict the discussion to the case where 
the calibration is periodic (i.e., period T, determined 
by t A )  and then generalize to other situations later. One 
period of the calibration is as follows: 

t A  start  of calibration interval 
tA+&(T-7 )  star t  of frequency measurement ( r  < T )  
t A  +&(T+T) end of frequency measurement 

t A  +I" end of calibration interval, 

At = Af.4 - TI- 6f2 \ 
\ 52" L' ( 7 )  

where (6fl/Qo), is the average relative frequency offset 
during the interval t A + + ( 2 ' - ~ )  to tA++(T+7).  

Even though, in general, i is not constant, E and i 
are not knowable, and thus one is usually reduced to  
using (7) anyuay .  The problem, then, is to determine 
how much error is introduced by using ( 7 ) .  

The time error 6t accumulated over an interval '1' 
conimitted by using ( 7 )  can be expressed in the form, 

where the quantity {6Q/flo)7 is given by 

Equations (8) and (9) can be combined to give 

- '[.(t4 7 + y) - +3]. (10) 

I t  is this equation which relates the random phase 
fluctuations with the corresponding errors in the time 
determination. 

M e a n i n g f u l  Quanti t ies  

I t  is again of value to  further restrict the discussion to  
a particular situation and generalize a t  a later point. 
In particular, let I'= 37, then (10) beconies 

6t = € ( t A  + 3r) - € ( L A )  - 3[&4 + 27) - € ( t A  + 7)]. (11) 

I t  is now possible to define the discrete variable b). 
the relation 

E n  E €([A + H T ) ,  ?E = 0, 1, 2, ' ' ' 

and rewrite (11) in the simpler forni (see Table I )  

6t E A%,,, (12) 

where A3e, is the third finite difference of the discrete 
variable E , ~ .  

where T is the frequency measurement interval. If i 
were constant in time, the frequency measured during 
the interval t A $ $ ( T - 7 )  to t.1+$(T+r) would be just 
the average frequency during the complete measure- 
ment interval T since the oscillator would have an 
exactly linear drift in frequency. Also, i f  i were con- 
s tant ,  (6) could be written as 
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Similarly, ( 2 )  mal. be integrated directl), using (1) to  If three oscillators are used, i t  is possible to  indepen- 
dently measure the three quantities u1z, crI3, and (T23. Thus obtain 
there exist three independent equations : 

1 (TI22 = (TI2 + u.92 
cy + 4.4 + d o ) .  (13) 

Thus,  by defining another discrete variable +,,, the  third 
difference of (13) yields t h e  relation 

A’+, = bloA3en, (l’) While the three equations, 

i, j = 1 ,  2 ,  3 or equivalently, 

j i < j  

are not linearli independent, the standard deviations 
u,]? given b) (1X) ,  in fact, foriii l inexl j  independent 
equations (su b j ec t on 1 y to cer ta 1 n con d i ti on s m,il ogo u s 

Si,, A3en(’) - A3e,,(3) 1 

61 = (13 

I t  is non possible to  set up ‘1 t,ible of meaningful quan- 
tities for time measurement (see Table I I )  

I;irst difference of the phase ]A#,, 1 Proportioiial to the average freqiienc). i n  the interval r .  Must exist for :!I1 time. 

Second ditfereiice of the ph,i\e ]Az@,, 1 Related to the drift of the oscillator frequency Must exist for ‘ill time 

Variance of the second dilfereiice\([.!,%$,,- (1Z#,J]’2) (It  is possible to  construct a time scale even if this does riot exist. How-ever, experimeiit I indicates that it is probably finite.) 

Third difference of the phase IA34,, Proportion;il to the clock error i n  the time interval T = 3 r .  LIust exist if clock is to be of 
value. 

\Iean q u x e  third tliltereuce j ( (A3@,,)  )?  I Proportiorial to the precision of time wterv,il measureinent~. \lust exist if clock 15 t o  he 1 of value 
- ~- ~~ - -  

U here all ,iverageb are delined b> the relation: 

IXxperLmenfal Determinat ion of Phase  Fluctuations 
If one mecisiires the phase difference bet\\-een t \ \o 

oscillators, (15) applies t o  both,  and hence the difference 
phase 8,, =&(ll -+,,(?) is related to  the difference time 
6 f i z  = 6 t l -  6 t 2  by the relations 

1 

RO 
B t 1 2  = --- A30,, = A3e,, L, - A 3 ~ , , ( r ) .  (16) 

Provided that  the cross-correlation coefficient ((43t,,(11) 

(A3cn(?)) ) is zero (i e., the l ’  are noncorrelated), the 
variance of 6 t l s  becomes 

u,s? E ((S!]?)?) = ( (A3€, , ( ’ ’ )?)  + ( ( A 3 € n ( 1 ’ ) 2 ) ,  (17) 

since it is assunied th,tt (A3e,,)  = 0. The assumption that 
the cross-correlation coeflicients vanish is equivalent to  
postulating an absence of linear coupling betu een the 
oscillators either electricall> or through their environ- 
ment. I t  is of value to  develop a scheme lvhich is capa- 
ble of classifying individual oscillators rather than 
treating ensenibles of assumed identical members. Thus,  
this development is restricted to time averages of indi- 
vidual oscillators rather than ensemble averages. 

to  the triangle inequalities). Thus,  the systems of (18) 
are solvable for the three quantities u L 2 = ( ( 6 t J 2 ) .  I t  is 
thus possible to  estimate the statistical behavior of each 
individual oscillator. 

A pparatus 
A phase meter n-as used similar to one described in 

Cutler and Searle [SI. The basic sq,steni was aligned 
Ivith an electrical-to-mechanical angle tolerance of 
about kO.25 percent of one complete cycle, and since 
the phase meter is operated a t  10 I ~ T c ~ s ,  this implies the 
possibility- of measuring the time difference to  f 0.25 
nanoseconds. The  output shaft, in turn,  drives a digital 
encoder with one hundred counts per revolution and a 
total accumulation (before starting over) of one million. 
Thus the digital information is accurate to  \\-ithin one 
ns and accumulates up to  one tiis. Since ineasurements 
are made relatively often, it is easy for a computer to  
spot \\-hen the digital encoder has passed one ins on the 
data ,  and this restriction on the data  format in no \vay 
hampers the total length of the data  handled. 

Since the oscillator is assumed to  have ;I linear drift 
in frequenci, \vith time, the variance (about the mean) 
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of the second difference of the phase should depend onlj 
on the e n ( & )  l:or the evaluation of clocks, it is the mean 
squ,ire time error u hich is important and, thus, the 
nie<in square (r'ither th'tn vxiance)  of the third differ- 
ence of the ph'ise is the cjunntitj of iniportance. Calcu- 
Intions of these qumti t ies  froni the phase d,, \I ere x -  
coniplished on a digit,il coniputer Yormnll\ the phase 
difference is printed e%er\ hour for a t  least 200 hours 
m d  the computer progr,im coniputes the AW,, and 
add,, for eclu'il t o  2 ,  4, 6, 8, etc , hours. Thus it is possi- 
ble to  plot the square root of the varimce of the second 
differerice and the root nienn square third difference of 
t h e  ph.ise <IS <I function of the vxiab le  T ;i t j  pica1 plot 
of these t n o  quantities appears in Fig. 2. 

300 

I / I DAY 2 DAYS I 

I I I I I l l l l  I I  
20 30 40 50 60 80 100 200 

IO  
IO 

TIME ( KILOSECONDSI 

Fig. 2. Variance of second a i d  third difference as a function of 7 .  

Since n i a n ~ ~  revolutions of the phase meter are nor- 
mally encountered betiyeen data  points, the combined 
effects of nonperfect electrical-to-mechanical phase and 
rounding errors of the digital encoder can be combined 
into one stationary, statistical quantity y, tha t  can be 
assumed to  have delta-function auto-correlation. Let x 
represent the rounding errors of the digital encoder 
defined by the difference betiyeen the encoded number 
and the actual angular position of the shaft. Then 
these rounding errors form a rectangular distribution 
from -0.5 ns to fO.5 ns, and,  t h u s ,  contribute an 
amount 

x' dx 
= 0.08 ns: 

l i 2  

dx 

to  ( y 2 ) .  The nonperfect electric,il-to-inechanical phase 
conversion is sinusoid,il in n ~ t u r e  'ind, thus, contributes 
an  miount  equal to 

4(0.25)? = 0.03 ns? 

The final value for (y?) should then be 'tbout 0.11 lis? 

'I'his \ \as checked b j  t,tking trio ver) good oscilla- 
tors operating a t  a rather large difference frequent), 
(-5 X and printing the ph.Lse difference ever) 10 
seconds for several minutes Since frequencj fluctu'itions 
of the oscilhtors are small compared to  1 X 10-ln, the 
resultant scntter cdn be 'ittributed to  the nieasuring s\ s- 
tem. The results of this experiment gave the value 0.19 
ns2 for (y?). 

Since y is assumed to  have 'i delta-function auto-cor- 
relation, reference to  Table I shou s tha t  ( (A3y)2)  
=20(y2j, and thus (18) may be more precisel? nr i t ten,  

(18') 
1 u12' = cT12 + cT22 + 20(y9 

cT13 = UI2 + (73' + 20(y2)  . 
c 2 3  = 'S22 + cX2 + 20")'') 1 

For the best oscillators tested, crt,2 became about 
2((A3y)2j for T = l o 3  seconds, and,  therefore, measure- 
ments nere  limited on the louer end to 20 minutes or 
1200 seconds. The  longest run ninde lasted a little over 
'1 month or about one thousand hours. Thus the largest 
value of T \\ hich might have reason'ible avernging is 
,ibout one hundred hours or 3.6X lo5 seconds. This lini- 
its the results to  about t n o  orders of magnitude varia- 
tion on r.  

\I-hile i t  is possible to build appropriate frequenc) 
multipliers and mixers to  improve the resolution of the 
phase meter and reduce the lower limit on T ,  it \\as con- 
sidered thnt the longer time intervals are of greater in- 
terest because T (=  3 ~ )  is norni,illy bet\\ een one da) 
m d  one week. 

I I .  THEORETICAL DISVELOPMEN I' 

Introdiictory Remarks  
In the development \I hich follou s, certain basic as- 

sumptions are made I t  is assuined that  the coefficients 
9, and a of (1) ma) be so chosen tha t  the average value 
of ~ ( t )  is zero; i.e., 

( e ( / ) )  = 0. 

I t  is also .issunled tha t  '1 translation in the time axis, 
t4-+t4 +{, (stationarity) cnuses no change in the value 
of the auto-covariance function, 

R,(7)  = ( € ( t ) . € ( t  + 7)) 
= ( € ( t  + t ) .  €0 + E + 7)). (19) 

The  only justification of this assumption lies in the fact 
that  the results of the m a l j  sis agree \I ell u-ith experi- 
ment and the results of others. In the development 
n hich follows, one caiznot assume tha t  

RAO) = ([4012) 
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exists (i.e., is finite) and, hence, Ll’iener [ 7 ]  cannot 
guarantee that  (19) is valid. While i t  ma?. be that  X6(7) 
does not exist, quantities such as 

~ ( 7 )  = ~[R,(o)  - R,(T)J (20) 

i i i a y  exist and be meaningful i f  limits are approached 
properly. I t  is, thus, assumed that  relations such as 
(20) have meaning and may be handled by conventional 
means. 

Deaelopment of Experimental Results 

All oscillator pairs tested, \\ hich exhibited a stable 
drift  rate as indicated in Fig. 1 and did not have obvious 
diurnal fluctuations in frequency, showed a definite, 
very nearly linear dependence on 7 for both the standard 
deviation of the second difference and the root mean 
square third difference of the phase. I t  was observed 
that  if an oscillator were disturbed accidentally during 
‘L measurement, t h e  plot aould have a more nearl). 73 /2  

dependence. This is probably because the assumption 
of a negligible quadratic dependence of frequency ~ i t h  
time is not valid \\hen the oscillator is disturbed. All 
oscillators tested, therefore, were shock mounted and all 
load changes and ph) sical conditions \\ere changed as  
little as  possible. 

A least square fit of all reliable data  to an equation of 
the form 

_- 
d ( ( ~ m e , , ) 2 )  = d Z , T *  m = 2 , 3 , 4  (21) 

gave <I value of 1.09 for the average of the p’s. The  values 
of p ranged from about 0.90 to 1.15 (and even to 1.5 
u hen the oscillators nere  disturbed during the nieasure- 
ment). I t  is of interest to  postulate that ,  for an ‘<ideal,” 
undisturbed quartz cr j  stal oscillator, the value of p is 
exactly the integer one, and to investigate the conse- 
quences of th i s  assumption. 

Hecause certain difficulties arise a t  the value p = 1, it 
is essential to calculate n-ith a general p m d  then pass to 
the limits p-+l(-) for the quantities of interest. This is 
equivalent to considering a sequence of processes 15 hich 
approach, as a limit, the case of the “ideal” crystal 
oscillator. Thus (21) ma)  be reuritten for m=2 in the 
form 

((A*en)’) = kz 1 7 I?+. (22) 

lTsing Table I ,  (22) may then be re\\ ritten as 

6([e(L I)]’)-  8 { e ( t  1 )  , E ( )  i+7))+2(e(t .4)  . E ( ~ A + ~ T ) ) = K ~  1 T lz’ 
or, equivalently, 

6R,(O) - 8R,(T) + 2Re(2T) = kz I 7 1” .  (23) 

As mentioned above, the function U(7) is defined by the 
relation 

C(T) = ( [ € ( t B )  - c ( t 4  + 7)1*) 

and is assumed to exist. Equations (23) and (24) may 
be combined to give 

4c‘(7) - u(27) = k z  I 7 1’’. 

U ( 7 )  = A @ ) .  ~ 7 1 8  

( 2 5 )  

If a trial solution of the forni 

is used, one obtains 

from which one concludes that 

and 

uhere 
(21) may, thus, be satisfied i f  

1 since U ( T )  and k2 are non-negative. Equation 

which implies that  A(2)  is infinite. I t  is for this reason 
that  the limiting process must be employed. 

I t  is not necessary, however, to assume a particular 
form for A ( 2 p )  because ( 2 7 )  issufficient for the purposes 
of this development. 

I t  is now possible to determine the mean square third 
difference of E , ;  i.e., from Table I ,  

((63€n)2) = 2 0 ( [ t ( 1 ~ ) ] ~ )  - 30([t(tLi).t(fa + T ) ] )  

+ 12( [4 t . i ) .~ ( t . i  + 27)]) - 2([ t ( ta) .~(f i  + ST)]), (28) 

u here use has again been made of (19). Equation (28) 
may equivalently be written in the form 

((A3e,t)2) = 151.(7) - 6U(27) + U(3.r), (29) 

ivhich may be combined with (26) to yield 

If one 1 1 0 ~  passes to the limit p+1(-), (30)  becomes 

‘Thus, a quadratic dependence of the variance of the 
second difference of the phase implies a quadratic de- 
pendence of the mean square third difference, and the 
ratio 

is independent of T .  The average ratio of the points 
plotted in Fig. 2 is 1.65. Values ranging from 1.4 to 1.7 
were observed for various runs on different oscillator 

= 2[Ke(0) - Re(7)1 (24) pairs. L4verage value for all reliable data  taken is 1.52. 
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?MISE 
UOOULATOR 

F R t P U E W  

I S I N T H E S l E R )  

and i t  is no\\ possible t o  interchange the subscripts n 
and 1 in the last term of (38) and \\-rite the equation in 

MULIIPLIER 

I - 
I - I 

Generalization o f  the T i m e  Error Problem 
one obtains 

a,aL(bl - b , j 2  = 0 (30) 
n< 1 

The  average frequency of an oscillator over a n  inter- 
val of time is just the total elapsed phase in the interval 
divided by  the time interval. Since errors of the fre- 
quenc). standard are  not present]>- being considered, the 
calibration interval of Section I gives rise to  an error 
titile 6t  \\-hich could he expressed ;is a sum 

as  another condition on the {(L,,, h,, I .  Equation (40) is, 
of course, not independent of (35)-(37). 

For the actual situation \\-here ~ ( t , , )  is not identically 
zero, one is reduced, as before [see ( 7 ) ] ,  to  using condi- 
tions (35)-(35) since c ( f . 1 )  is not kno\\-able. The  time 
error then becomes 

(33) 
b l n  ?n 

\\-here m + l  is the total number of terms and the set 
{ a,t ,  b,, 1 'ire chosen to  fit the particular calibration pro- 
cedure. Indeed, an)' calibration procedure must give 
rise to <in error time nhich is expressible in the form 
of (33). 

\\.here use has been made of (13), (33), and the restric- 
tions (35)-(37). S o t e  that  (-11) is the generaliz,ition of 
(10). The  square of (41) can be nrit ten in the forin 

m r .  1 here are, boil-ever, certain restrictions on the { a,, b,t 
\\ hich are of importance. First, i t  is a matter of conve- 
nience t o  require that  bl> b,, for I > % .  Also, i f  the oscillator 

one should logically require that  the error time 6t be 
identically zero, independent of t 1, the drift rate a ,  and 
the basic time interval 7. T h a t  is, from (13) 

( 6 t ) l  = ~ ~ ~ ~ e ~ ( t . 4  + b,T) 
n=O 

ere absolutelj- perfect, and f ( t 4 )  \\-ere identicalll; zero, "L + 2 E a,,az[e(li + b , , T ) . E ( f i  + b i ~ ) J ,  (32) 
, # < Z  

\\ hich m,t> be averaged over f I to  J ield 

for all t , l ,  a ,  and 7. One is thus led to  the three condi- 
tions 1 

rn 

a,,b,, = 0, 
7 l = O  

m 

anbn' = 0. 
n=O 

I t  is of interest to  form the quantity 

I t  < 1 

\\here use has again been made of (19). 
The  square of (35) may be \\-ritten as (35) 

76-0 ,L<1 

and (43) then becomes 
(37) 

((6tj') = - a,,a,( (t"(t.1) { 2 ( E 2 ( t A ) )  
n< 1 

- 2([e( tA) . t ( t . i  + (61 - b r s ) ~ ) ] ) ] .  (44) 

Combining (44) u i th  (21) one obtains 

((6tj') = - a,,aiC((br - b n ) T ) .  (45) 
n< 1 
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Substitution of (26) in (45) yields 

which is indeterminate of the forni (0/0) for p = 1  be- 
cause of (40). Making use of L’Hospital’s rule, the limit 
of this expression as p-+I(-) is 

Equation (47) is thus the generalization of (31). Since 
many terms appear in the summation in (47), a com- 
puter program was written for evaluation with particu- 
lar sets of {anr  b, 1 .  
Comparison W i t h  Others 

Rf(7),  one would obtain 
If one were to assume that  (20) could be solved for 

R,(T) = Rf(0) - ~ U ( T )  (48) 

which expresses the auto-covariance function in terms 
of U(T).  If one assumes still further that  the Wiener- 
Khinchin theorem applies to  (48), the power spectral 
density of ~ ( t )  is then the Fourier transform of Rf(7) ; 
i.e., 

2(4 - 22’) 
5 ’ ~ ( ~ )  = F.T. [ R f ( 0 )  - 

Fortunately, Fourier transforms of functions like ~ T 1 z p  

have been worked out in Lighthill [8]. The  result is 

k2 [ COS “(’P2+ l)] [(2p,!]  1 w (-211-1 

- . (49) 
2n(4 - 2’”) 

The  factor of (1/27r) occurs because S,(w) is assumed to  
be a density relative to an  angular frequency w ,  rather 
than a cycle frequency (f=w,/27r) as is used in [8]. The  
first term on the right of (49) indicates an infinite den- 
sity of power a t  zero frequency, i.e., a nonzero average. 
The  zero frequency components are not measurable 
experimentally, and hence this term will be dropped as  
not being significant to  these discussions. The second 
term on the right of (49) is indeterminate for p =  1. As 
before, the limit as p-+l(-) may be obtained, yielding 

(50) 

for the final result. 
The assumptions needed to  arrive a t  (50) are not 

wholly satisfying, and i t  is of value to show that  (50) 

implies that  ( ( A 2 ~ , ) 2 )  is indeed given by (21) for m = 2 .  
Only one additional assumption is needed, the Wiener- 
Khinchin theorem. Since X , ( T )  and s,(~) are real quan-  
tities, this theorem may be written in the forni 

K(7) = 2 L=kw) cos UT dw. (53) 

From Table I ,  one may obtain (after squaring and 
averaging) the expression 

((A’e,)’) = 6R,(O) - 8R,(7) + 2Rf(2r). (52) 

Substitution of (51) in (52) yields 

((A2en)2) = 4JmS,(~)[3 - 4 cos (UT) + cos ( ~ w T ) ]  dw.  (53) 

Using (50) for S,(w) is a lengthy but  straightforward 
process to  evaluate the integral in (53). The  result is, 
in fact, 

( ( A * E ~ ) * )  = k z T 2 ,  

in agreement with (21). 

for example, in Lighthill ( [S i  p. 20), that  
If gf(w) is the Fourier transform of ~ ( t ) ,  it is shown, 

g; (w)  = i w g d w )  

is the Fourier transfornl of i(Q. T h u s ,  the power spectral 
density of i ( t )  is related to the power spectrat density 
of e( t )  by the familiar relation 

&(a) = w*S,(w). 

Thus, the power spectral density of the frequency fluctua- 
tions of an “ideal” oscillator may be given as 

kz  
8 In 2 

S;(w) = ___ l ~ l - ’ ,  
that  is, flicker noise frequency modulation. The  exis- 
tence of this type of noise modulating the frequency of 
good quartz crystal oscillators has been reported by sev- 
eral others [2]-151, [SI. 

Comments  o n  the “Ideal” Oscillator 
I t  has thus been shown that  the assumptions of sta- 

tionarity and “ideal” behavior form a basis for a mathe- 
matical model of a quartz crystal oscillator which is i n  
quite good agreement with several experiments and ex- 
perimenters. On the basis of this model, it is now possi- 
ble to predict the behavior of q s t e m s  employing 
“nearly ideal” oscillators with the hope of committing 
no great errors. There are compelling reasons to believe 
that  U ( T )  actually exists (see Section IV) for real oscil- 
lators in spite of (26). Such conditions require that  the 

1 w I -l behavior for the power spectral density of the fre- 
quency fluctuations cut  off a t  some small, nonzero fre- 
quency. From some experiments [2 ]  conducted, how- 
ever, this cutoff frequency is probably much smaller 
than one cycle per year. Such small differences from 
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zero frequency are of essentially academic interest to  the 
manufacturer and user of oscillators. Quantities which 
may be expressed in the form of (41), however, where 
the coefficients satisfy conditions (35)-(37), have finite 
averages even in the limit as flicker noise behavior ap- 
proaches zero modulation frequency. Such quantities 
are called cutoff independent in contrast to quantities 
like U ( T )  which will exist only i f  the flicker noise cuts off 
a t  some nonzero frequency. 

I 

111. ATOMIC FREQUENCY STANDARDS 

Passive Devices 

‘There are in use today two general types of atomic 
frequency standards: 1) the active device such as  a 
maser whose atoms actually generate a coherent signal 
whose frequency is the standard, and 2)  the passive type 
such as a cesium beam or rubidium gas cell. In the pas- 
sive type, a microwave signal irradiates the atoms and 
some means is employed to detect any change in the 
atom’s energy state. This paper is restricted to the pas- 
sive type of frequency standard. Some experiments are 
in progress, however, to  determine the statistical be- 
havior of a maser type oscillator. 

I t  is first of value to  discuss in what way a “standard” 
can have fluctuations or errors. Consider the cesium 
beam. Ideally the standard would be the exact frequent? 
of the photons emitted or absorbed a t  zero magnetic 
field in the (F=4, m f = O ) H ( F = 3 ,  mf=O) transition of 

in the ground electronic state for an infinite 
interaction time. This is, of course, impossible. This 
means tha t  the standard is a t  least less than ideal and 
one is, thus, led to  speak, in some sense of the word, 
about “errors” or even “fluctuations” of the standard. 

Figure 3 shows a block diagram of a typical standard 
of the passive type. An equivalent diagram of this fre- 
quency-lock servo is shown in Fig. 4, where Vl(w) is the 
Fourier Transform of the noise generated in the detec- 
tors, associated demodulating circuitry, and the fre- 
quency multipliers of Fig. 3. V z ( w )  is an equivalent 
noise voltage driving the reactance tube in the oscillator 
to produce the i ( t A )  term in the unlocked oscillator, 
such tha t  flicker noise FM results. The power spectrum 
of Vz(w),  then, is given by 

where h , / / w l  is the power spectral density of the fre- 
q u e n c y  fluctuations of the unlocked oscillator. 

I t  is easiest to  treat the servo equations by the use of 
the variable +, defined to be the difference between the 
output frequency of the multiplier and the “ideal” fre- 
quency of the atomic transition (the output of the 
“atomic device,” as shown in Fig. 4, is then assumed to 
be the constant zero). In  order to  preserve the dimen- 
sions of voltage for the addition networks, it is conve- 
nient to assume that  the output of the subtraction net- 

work is -/3+ \\.here p has the dimensions of volt- 
seconds. Thus,  the equation governing the operation of 
the servo can be expressed, in the frequency domain, as 

‘This leads to a pon-er spectral density for + given b!. 

where use has been made of (54). 

the order of 10 s-l. Thus,  for small w ,  (56) becomes 
Normally, ~7~ becomes of the order of ( P N C )  for w of 

1 
S j ( W )  = -Sv1(w) 

P 
(57) 

RrnUtlCl  
YLLllPLlIR 

X N  

v, I w l  NOl5E GENERATED IN DETECTOR 
Vz I w l  E9UIVALENT NOISE TO GENERATE FLICKER NOISE IN VCC 

Fig. 4. Eq~iivaleiit servotliagrarn oi‘ pnssikme type frccluenc.ystandard. 
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By applying the techniques of Section I to the differ- 
ence phase of t\vo cesium beams, the curves shown in 
Fig. 5 were obtained. Through least square fits to the 
data  and comparing the ratios of the variances of dif- 
ferences (see Appendix), the result was obtained that  the 
data  fit curves of the form 

-1 0 

2 n  + 1 12 

- 2 n -  1 n + 1 

for 7 = 1.34, \vi th  a n  uncertainty (standard deviation) 
of about +0.04. Again using [8] as before, this leads to 
the result that  

tvhere p=0.34+0.04. One is, thus, led to the very 
strange conclusion thnt the spectral distribution of the 
detector and multiplier noise varies as - 1 w 1 The 
source of this noise a as later traced to a fault)- preampli- 
fier. With a proper aniplifier used, the spectral distribu- 
tion appears white as  other papers [SI, [ lo ] ,  [ l l ]  indi- 
cate should be the case. 

Ideally, for measurenients over times large compared 
to the servo time constant, the error accumulated during 
one measurement interval should be independent of 
errors accumulated during nonoverlapping intervals, 
i.e., mathematically analogous to  Broxvnian Afotion 
[12] .  This implies that  S,(w) should be constant for 
Iw/ <1 s-1. 

EXPONENT 7 

Fig. 6.  Ratio of variances, ((Anf1 m ) z ) , / ( ( A n m z ) z } ,  as a functioii of the exponent 7. 

The Composite Clock System 

If an oscillator's frequency is measured by an atomic 
standard, the error in measurement of the frequency is 
given by 
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I t  is easl to  shou that these coefficients satisf!. (35) 
(37). 

Substitution of these coefficients into (47) qrields 

((a/)?) = 2h?j -2rz'(2n + 1) In ( 1 1 )  

+ 2(n + 1)"212 + 1) In ( 1 2  + 1) 

- (2n + 1)' In (2n + 1) 1 ,  (61) 

\\.here h = k 2 / 8  In 2.  
Since T is normally sniall compared to  I * ,  it is reason- 

able to approximate (61) for large n. Tha t  is, the relative 
time error is approximately given by 

\\here the approxiin, a t '  ions 

1 
In ( a )  + - IZ >> 1, In ( n  + 1) 

M 

have been used. I t  is apparent from (62) that  for a given 
interval T, the errors accumulated by the clock are not 
critically dependent on the measuring time T ,  since 
dlF&] is a verq slo\\-Iy changing quantity. 

The  mean square error associated n i t h  the standard, 
ho\\\-ever, can be ivritten in the form 

since (59) may be written as  the first difference of yn. 
From (57)  it is apparent that  the relative time error is 
then given by 

where q =  1 (('white" noise). Or, combining (59), (62), 
and (64), 

As one should expect, for a given 7', the errors get less 
for larger T but  not rapidly. In the limit of T =  7' [not 
using the approxiniate (65)], the errors are those of the 
standard alone, i.e., 4 B 1 r / 2 ~ f S .  ,Also, as 7 - 4 ,  the clock 
errors are unbounded. 

Compounding Time Errors 

Equation (65) represents a reasonable approxim a t '  ion 
to the time errors of a clock systeni after one calibration 
interval. The next question is: ho\v do the errors of niany 
calibrations compound to give a total error S(NI-)  after 
N calibrations? Returning to (59),  one ma\. n-rite 

\\ here 6T, is the tinie error ,issoci,ited \\,it11 the nth cali- 
bration interval. 'There have been papers published [13] 
that  assume that  the errors of one calibration interval 
are not correlated to the errors of 'in) other c,tIibration 
interval. I t  is no\\ possible to investigate this ,tssump- 
tion more precisell. 

In particular, the clock errors (not including the fre- 
quency standard errors) 6t,, conipound to give S ( N t ) ,  
given by 

N 

6(Av\) = at,,, 
n=l 

n.hich can obviously be put in the forni of (41). I;or A7 
equal to any number larger than one, the algebra be- 
comes much too lengthy for actual calculation by hand 
and it is desirable to make use of a digital computer. 
'Table 111 shows the results of this calculation for coni- 
pounding several third-difference-type calibrations. I t  
is interesting to note that,  in fact, the total iiiean square 
error after N calibrations is very nearly equal to  N -  
times the mean square error after one calibration. This 
is in quite good agreement kvith DePrins [ I S ] .  Thus,  the 
rnis relative eror may be approximated by the relation 

jvhere h, n, B1,  f?, and T have the same meanings as in 
(65). 

TABLE I11 
THEORETICAL D E T I ? K M I N A T I O N  OF T I M E  E R R O R  PROPAG4TION 

2.054 
3.109 
4.165 
5.220 
6.276 
7.332 

The conclusions which can no\\ be drawn are that :  
1) the total rnis time error of this clock system from an 
"ideal" atomic clock is unbounded a s  time increases, and 
2)  the relative rms error time to total elapsed tinie (6X) 
approaches zero about as fast as  W1'2. I t  should be 
mentioned here that  systematic errors in the atomic 
standard have not been considered. II'hile this is a very 
important problem, it has been tre'ited rather thor- 
oughly elsewhere [ lo] ,  [ l l ] ,  [14]-[16]. 
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I\’. RIEASUKES OF FREQUENCY S m r m I n  

General liestrictions 

I t  is of value to consider the problem of establishing a 
stability nieasure in a very general sense. Consider some 
functional of the phase 

x = x(4(t>)r 

from nhich the stnbilit! iiiecisure q is obtained accord- 
ing to the re1 a t‘ 1011 

q2 Lim - 

provided this limit exists. 

and,  thus, one iiieasures for soiiie fixed tinie, 1‘; i.e., 
In practice it is riot possible to pass to the limit T-+ 00,  

I’nder favorable conditions, \k7! may be a reasonable 
approxiniation to \k. IJnfortunately, this may not al- 
a a y s  be the case. 

The frequenc) emitted by any physically realizable 
device rriust be bounded by some upper bound, sal- B. 
The  folloLving inequalities must, then, be valid : 

I n(t) I 5 B, for some B > 0;  

Lim - T i 2 ( 1 2 ( t ) ) 2  dt 5 B2. 
T - m  T 

With S;(w)  being the pouer spectral densit!, of Q ( t ) ,  it 
follo\vs from the definition of pou-er spectra that  

Lim - T ’ 2  (n(t ) )? d! = 2 L = S i ( w )  dw 
T - m  T - ~ , 2  

for real Q ( t ) ,  and thus 

2 sgisb(w) dw 5 B?. (69) 

If S,(w) has a flicker noise spectrum for small w ,  it 
is apparent that  this l / l w l  type of noise cannot persist 
to absolute zero frequency or the inequality (69) would 
be violated. I t  is, thus, reasonable to postulate the 
existence of a loner cutoff frequency 01, for the flicker 
noise modulation. 

I t  is apparent from the preceding considerations that  
stability measures may exist for u hich q.1, begins to 
approach q onlS. after T is several times larger than 
1/wL.  From some of the experiments 04 crystal oscil- 
lators [ 2 ] ,  this may require 1’ to exceed several years in 
duration. This is quite inconvenient from a manufactur- 
ing or experimental standpoint. The  logical conclusion 
is to  consider only those stability measures \k \vhich are 
“cutoff independent,” that  is, those measures of stability 
which Lvould be valid even in the limit wL-+O+. 

6 

Finite Di ferences  

form 
I t  \vas shoivn in Section I1 that  an expression of the 

1 m  
1 ..- 

61 = - E a&(t + bnr)  
a0 n=O 

will have a finite variance if the {a , ,  b,i 1 satisfy condi- 
tions (35)-(37). I t  is easy to shoi\ that  the first difference 
of the phase (Le., frequent>) cannot be put in  the forni 
of (70) \vith the coefficients satisfying conditions ( 3 5 ) -  
(37). Indeed, the limit 

does not exist, and, hence, C r ( 7 )  is not a good nieasure 
of stab i 1 it y . 

The variances of the second and third finite differ- 
ences, hmvever, are convergent. I t  is of interest to note 
that  the first line of Table 111 may be expressed in the 
forni 

which may be simplified to the forni 

This equation expresses the fact t ha t  a third difference 
has a very small correlation (-3 percent) to an adja- 
cent, nonoverlapping third difference. I3). extending 
this procedure v i th  the other values given in Table 111, 
it is found that  the correlation of one third difference 
with a nonoverlapping third difference beconies sniall 
very rapidly as  the interval between these differences 
becomes large. This is sufficient to insure that  the vari- 
ance of a finite sample of third differences mill approach 
the “true” variance (infinite average) in a well-behaved 
and reasonable fashion as  the sample gets larger. 

Variance of Frequency Fliictiiations f o r  Fini te  Averaging 
Times 

Even though the variance of the first difference of the 
phase does not satisfl. the condition of being cutoff inde- 
pendent, it is possible (by specifying both the sample 
time and the total averaging time) to construct a cutoff 
independent measure of the frequency fluctuations. 
Instead of \kT, the variance of N adjacent samples of the 
frequency will be denoted by a2(r ,  N )  m-here T is the 
sample time for each of the Ai measurements of fre- 
quency. The variance is given by the conventional 
f orin ula 
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I f  one neglects the drift rate a ,  \\-hich is essentiall>. 
equivalent t o  obtaining the standard deviation around 
;I linear drift, one obtains 

1 

!I7 
- - ( [ E ( t  + iVT) - 

For the case of an  “ideal” cr1,stal oscillator, (19), (24), 
and (26) allow (71)  to be simplified (after passing to  the 
l ini i t  p-+l(-) to  the form 

2 h S  In (S) 

s - 1 
( d ( 7 ,  S)) = ___---- 

,. I hus,  as N increases, the expected value of u2(7, N )  i n -  
creases ni thout  bound (at least until ; V T - ~  ’wL ) .  I t  is 
interesting to  note tha t  for ‘1 given oscillator, ( ~ ~ ( 7 ,  1%’) i 
has a mininiuni value for N = 2 .  Obviousl) one would 
have to  average several experimental determinations of 
d ( ~ ,  2) in order to  have a reasonable approximation to  

\Vhile ~ ( 7 ,  N )  is a cutoff independent measure of fre- 
quency stabilit) , it has the significant disadvantage of 
being a function of t n o  variables. Indeed, in order t o  
conipare the stabilitj. of t u  o oscillators, both the 7 ’ s  
and the N ’ s  should have nearly corresponding values 

(CY77 2)) .  

Delayed Frequency Comparison 

In radar n-ork, often the frequent) of a signal is coni- 
pared to the frequency of the smie  source after i t  has 
been delayed in traversing some distance-often a very 
great distance. One might, thus, be interested in defin- 
ing it stability measure in  an  analogous fashion: 

7 

( 7 2 )  - _______. 

T 

rlg<Lin neglecting the drift rate a of the oscillator, (24) 
mid (72)  combine to  yield 

1 
*’(T, T )  = -; [21~(7 ) - - . (T -T)+21 . (T ) - - . (T+T)] .  (73)  

T- 

I f te r  substitution of (26) into (73) the e q u t i o n  can tie 
rearrmged to  give (again passing to  the liniit, p+l(-’) 

\lr?(r, T )  = - 2 1 i [ p ? I n p  - (1 + p)’ In (1 + p )  

- ( p  - 1): I n  ( p  - l ) ] ,  

\\ here p = 2’ ’7. >4lthough this is a rather coniplicated es- 
pression, it ma) tie sirnplified I\ i t h  the approximation 
p -  T ” T > > ~ .  The result is 

T 

for a n  “ideal” oscillator. I t  is interesting to  note here 
that  even \\ hen considering on11 1 j w 1 t) pe of noise, 
one cannot pass to  the liinit T = O  for this probleni. In 
the limit as T+O+, the expression 

and thus 

Lim !P?(T, T )  = ( [ Q ( t  + T )  - Q ( L ) ] ~ )  ---f 3 ~ .  
7-0+ 

from (74), even though 7’<<1 / w L .  The source of this 
difficult1 is the high-frecluenc> divergence of the flicker 
noise spectrum. If the SE stem is limited a t  the high fre- 
quenc) by  w I f ,  then one should pass to  the liniit 7-1 ’wI I .  

Xg‘iin, $ ( T ,  7 ) is a function of t\\ o variables I\ i th  all 
of the associated .inno) arices. I t  m a > ,  hou ever, be useful 
in certain applications. 

Conc L I  SIOh 

The assuinptions of stationarit) .ind “idelil” behnvior 
for quartz cr! stal oscillntor lead to <L statistical model 
I\ hich agrees I\ ell \I ith iiian> different experiments 
One finds, hon ever, tha t  certnin qu,intities ‘ire 1111- 
hounded ‘1s ,Lveraging times are extended and it is iiii- 
portant to  consider on11 those quantities 11 hich hnve 
reasonable hope of converging to\\ ard <i good value in  
reasonable time. Thus,  the concepts of cutoff dependent 
and cutoff independent measures of frequent) stabilit> 
form a natural classification for a l l  possible frequencx 
stabilits nieasures. 

On the basis of “ideal” behavior, i t  has been shovn 
tha t  the errors of a clock, run from ‘L quartL crystal 
oscillator and periodical11 referenced to  a i  atomic fre- 
quenc) stnndard, accumulate error at  <i probable rate 
proportional to  the square root of the number of calibr,i- 
tions. That IS ,  the errors of one calibration interval <ire 
essentiall) uncorrelated to  errors of nonoverlapping in- 
tervals in spite of the fact th,tt “idecil” beh,ivior is highl! 
correlated for long periods of time 

I t  has also been shonn that  the method of finite dif- 
ferences can be a useful method at determining spectr,il 
distributions of noise, ‘1s \\ell AS being ‘i possible niecisure 
of frecliienc> stahilit! I3x using higher order finite dif- 
ferences, phase fluctuations I\ ith even a higher order 
pole a t  Lero-modulation frequencv can siniilarlj be 
treated The need for hiqher than second or third differ- 
ences, hou ever, has not 3 e t  been deiiionstr<ited. 

I t  should be noted tha t  the existence of higher-fre- 
quenc) nioduLition noise of different origin ,ilso h,is 
significant affect on st,tbilitj nieasures. 111 gerier,tl, the 
factors hich l i i i i i t  the sx stem to  ‘i hnite bmdpciss ,ire 
sufficient to  insure convergence of the stabilitx iiie‘isures 
as w+ x: If it is primnril> the me,isuriiig SJ stein I\ hich 
limits the sx stem bandpass, hou ever, the results m,i> be 
significantl> altered bjr the ineasuring q steni itself. 
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APPENDIX 

R.1 I IO OF \‘.\KIANCES 

Let ~ ( t )  be a real generalized function such tha t  ( t ( t )  ) 

= O  and define the discrete variable E, by the relation 

tm E t ( t  + WlT). (75) 

.Also, let the auto-covariance function of ~ ( t )  be, as  be- 
fore, independent of a simple time transition. One [nay 
IIOR. \trite (see Table I j 

((Ae,,)’) = 2 [ ( ( c , , ) ? )  - ( [ e ( /  + T ) E ( t ) ] ) ]  (76) 

and assume t h a t  
((AEm)2) = R I T ? ,  (77) 

lvhere kl is a constant for ‘1 given 7. I t  is also possible to  
obtain the varinnce of the second difference: 

((LI?~,)~) = 6((tm,)2) - 8([t(t + T ) . E ( ~ ) ] )  

+ ( [ 4 t  + 2T) t ( t ) l ) .  (78) 

I-sing (77)  and ( 7 X ) ,  one nia? obtain 

Since (79) must be non-negative (e is real), the ex- 
ponent is restricted to the range 7,752. 

Siinilarl>,, one maj. obtain the variance of the third 
difference 

a n d  hence the ratio 

Si m ilarl j-, 

Equations (79), ( X l ) ,  and ( 8 2 )  are plotted in Fig. 6 as a 
function of the exponent 7 .  

For q = 4 3 ,  ;is in  Fig. 6, the theoretical ratios, 

( ( ar1+ I&) 9 )  

for n = l  and 2 are 1.48 and 2.84, respectively. The  
straight lines dran-n in Fig. 5 were made to  have these 
ratios and slope 2 ’ 3  (the square root of the variances). 
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